$$
\begin{equation*}
\omega=-2 z\left(2 a_{1} r^{2}+a_{2} z^{2}+a_{3}\right) \tag{30}
\end{equation*}
$$

An examination of (29) indicates that the wafer can barrel in a parabolic fashion, having symmetry with respect to the mid-meridian wafer plane. Equation (30) shows that the wafer-anvil interface can likewise be deformed into a parabola; the line of symmetry being coincident with the wafer axis. It should be noted that no restriction has been placed on the wafer diameter-to-height ratio (D/H).

By taking the appropriate derivatives of the displacements, the strains are found to be

$$
\begin{align*}
& \epsilon_{r}=3 a_{1} r^{2}+3 a_{2} z^{2}+a_{3} \tag{31}\\
& \epsilon_{\theta}=a_{1} r^{2}+3 a_{2} z^{2}+a_{3} \\
& \epsilon_{z}=-4 a_{1} r^{2}-6 a_{2} z^{2}-2 a_{3} \\
& r_{r z}=2 r z\left(3 a_{2}-4 a_{1}\right)
\end{align*}
$$

